Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[chlorido(methyl phenyl sulfide-κS)mercury(II)]-μ-chlorido]

Ludmila Vigo, Pekka Salin, Raija Oilunkaniemi and Risto S. Laitinen*

Department of Chemistry, PO Box 3000, FI-90014 University of Oulu, Finland Correspondence e-mail: risto.laitinen@oulu.fi

Received 2 May 2008; accepted 8 May 2008

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.010 Å; R factor = 0.035; wR factor = 0.093; data-to-parameter ratio = 17.3.

The title compound, $[HgCl_2(C_7H_8S)]_n$, was isolated from the reaction of MeSPh with HgCl₂. The Hg^{II} atom has a distorted tetrahedral geometry and is coordinated by one S atom and three Cl atoms. Two of the Cl atoms act as bridging ligands between the Hg atoms, forming a two-dimensional polymeric structure.

Related literature

For related literature, see: Peindy et al. (2005).

Experimental

Crystal data [HgCl₂(C₇H₈S)] $M_r = 395.68$

Orthorhombic, *Pbca* a = 5.9616 (12) Å b = 14.935 (3) Å c = 22.142 (4) Å V = 1971.4 (7) Å³ Z = 8

Data collection

Bruker–Nonius KappaCCD diffractometer Absorption correction: multi-scan (*SHELXTL*; Sheldrick 2008) $T_{min} = 0.106, T_{max} = 0.355$ (expected range = 0.081–0.271)

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.092$ S = 1.071760 reflections Mo K α radiation $\mu = 16.30 \text{ mm}^{-1}$ T = 150 (2) K $0.25 \times 0.10 \times 0.08 \text{ mm}$

9374 measured reflections 1760 independent reflections 1562 reflections with $I > 2\sigma(I)$ $R_{int} = 0.063$

102 parameters H-atom parameters constrained
$$\begin{split} &\Delta\rho_{max}=2.22\ e\ {\rm \AA}^{-3}\\ &\Delta\rho_{min}=-1.51\ e\ {\rm \AA}^{-3} \end{split}$$

Table 1 Selected bond lengths (Å).

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *DENZO-SMN* (Otwinowski & Minor, 1997); data reduction: *DENZO-SMN*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Berndt, 1999); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

Financial support from the Academy of Finland is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SG2244).

References

- Brandenburg, K. & Berndt, M. (1999). *DIAMOND*. Crystal Impact GmbH, Bonn, Germany.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. London: Academic Press.
- Peindy, H. N., Guyon, F., Knorr, M. & Strohmann, C. (2005). Z. Anorg. Allg. Chem., 631, 2397–2400.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2008). E64, m809 [doi:10.1107/S1600536808013718]

catena-Poly[[chlorido(methyl phenyl sulfide-*KS*)mercury(II)]-*µ*-chlorido]

L. Vigo, P. Salin, R. Oilunkaniemi and R. S. Laitinen

Comment

Crystals of $[HgCl_2(MeSPh)]_n$ (I) were isolated from the reaction of MeSPh with HgCl₂ in EtOH. The asymmetric unit of I consists of one Hg atom, MeSPh ligand and two chlorine atoms. The mercury(II) atom has distorted tetrahedral geometry and is coordinated to one sulfur atom and three chlorine atoms. Two of the chlorine atoms act as bridging ligands between the mercury atoms forming a two-dimensional polymeric structure. The Hg - Cl bond lenghts are 2.6050 (17) and 2.742 (2) Å for the bridging chlorines and 2.3429 (18) Å for the terminal chlorine, The Hg - S bond length is 2.4548 (17) Å. The bond parameters can be compared to those in [{PhS(CH₂)SPh}Hg₂Cl₄]_n where Hg atom has a similar coordination environment (Peindy *et al.* (2005)]

Experimental

The addition of MeSPh (0.603 g; 4.85 mmol) to $HgCl_2$ (0.283 g: 1.04 mmol) in 10 ml EtOH gave at first a clear solution followed by precipitation of colourless crystals. Decomposition of the crystals took place upon removal of the solvent. Crystals suitable for crystal structure determination were picked from the reaction solution.

Refinement

H atoms were positioned geometrically and refined using a riding model with C—H = 0.95 - 0.98 Å and with $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of I indicating the numbering of the atoms. The thermal ellipsoids have been drawn at 50% probability.

Fig. 2. The packing of polymer chains.

catena-Poly[[chlorido(methyl phenyl sulfide-κS)mercury(II)]-μ-chlorido]

 $F_{000} = 1440$

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 3.7 - 25.4^{\circ}$

T = 150 (2) K

 $\mu = 16.30 \text{ mm}^{-1}$

Needle, colourless

 $0.25 \times 0.10 \times 0.08 \text{ mm}$

 $D_{\rm x} = 2.666 {\rm Mg} {\rm m}^{-3}$ Mo Kα radiation

Cell parameters from 1562 reflections

Crystal data

[HgCl₂(C₇H₈S)] $M_r = 395.68$ Orthorhombic, Pbca Hall symbol: -P 2ac 2ab *a* = 5.9616 (12) Å *b* = 14.935 (3) Å c = 22.142 (4) ÅV = 1971.4 (7) Å³ Z = 8

Data collection

Bruker–Nonius KappaCCD diffractometer	1760 independent reflections
Radiation source: fine-focus sealed tube	1562 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.063$
T = 150(2) K	$\theta_{\text{max}} = 25.5^{\circ}$
ϕ scans, and ω scans with κ offsets	$\theta_{\min} = 3.7^{\circ}$
Absorption correction: multi-scan (SHELXTL; Sheldrick 2008)	$h = -7 \rightarrow 7$
$T_{\min} = 0.106, T_{\max} = 0.355$	$k = -18 \rightarrow 16$
9374 measured reflections	$l = -23 \rightarrow 26$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.035$	$w = 1/[\sigma^2(F_o^2) + (0.0473P)^2 + 8.371P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.092$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.07	$\Delta \rho_{max} = 2.22 \text{ e} \text{ Å}^{-3}$
1760 reflections	$\Delta \rho_{min} = -1.51 \text{ e } \text{\AA}^{-3}$
102 parameters	Extinction correction: SHELXL97 (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.0014 (3)

methods

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Hg1	0.04378 (5)	0.284473 (18)	0.188615 (12)	0.03063 (19)
Cl1	0.0758 (3)	0.43434 (12)	0.15855 (8)	0.0366 (4)
C12	0.0860 (3)	0.26914 (14)	0.30526 (7)	0.0327 (4)
S1	0.1319 (3)	0.13004 (11)	0.15897 (7)	0.0284 (4)
C1	0.0764 (12)	0.1286 (5)	0.0799 (3)	0.0282 (15)
C2	-0.1212 (14)	0.1616 (5)	0.0562 (3)	0.0353 (16)
H2	-0.2335	0.1856	0.0820	0.042*
C3	-0.1532 (14)	0.1592 (5)	-0.0055 (3)	0.0405 (18)
H3	-0.2899	0.1802	-0.0223	0.049*
C4	0.0143 (15)	0.1260 (6)	-0.0432 (4)	0.045 (2)
H4	-0.0072	0.1256	-0.0857	0.054*
C5	0.2088 (15)	0.0941 (5)	-0.0191 (3)	0.0417 (19)
Н5	0.3216	0.0711	-0.0451	0.050*
C6	0.2443 (13)	0.0948 (4)	0.0425 (3)	0.0343 (15)
H6	0.3804	0.0728	0.0591	0.041*
C7	-0.0891 (15)	0.0613 (6)	0.1887 (3)	0.0371 (18)
H11A	-0.2345	0.0881	0.1787	0.056*
H11B	-0.0737	0.0570	0.2327	0.056*
H11C	-0.0796	0.0013	0.1709	0.056*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Hg1	0.0363 (3)	0.0265 (2)	0.0291 (2)	-0.00098 (11)	-0.00083 (10)	-0.00019 (10)
Cl1	0.0428 (10)	0.0268 (9)	0.0401 (10)	-0.0015 (7)	0.0006 (8)	0.0041 (7)
Cl2	0.0319 (8)	0.0446 (10)	0.0217 (8)	0.0000 (8)	-0.0009 (6)	0.0017 (7)
S1	0.0325 (9)	0.0279 (8)	0.0247 (8)	0.0024 (7)	-0.0007 (7)	-0.0011 (6)
C1	0.035 (4)	0.028 (3)	0.021 (3)	-0.003 (3)	0.001 (3)	0.002 (3)
C2	0.048 (4)	0.028 (4)	0.030 (4)	0.005 (3)	-0.002 (3)	-0.004 (3)
C3	0.052 (5)	0.038 (4)	0.031 (4)	-0.003 (4)	-0.003 (3)	0.000 (3)
C4	0.067 (5)	0.042 (4)	0.024 (4)	-0.013 (4)	-0.003 (4)	0.001 (3)
C5	0.058 (5)	0.039 (4)	0.029 (4)	-0.002 (4)	0.009 (4)	-0.004 (3)

supplementary materials

C6	0.043 (4)	0.028 (3)	0.033 (4)	0.002(3)	0.006(3) 0.002(3)	-0.002(3)
C7	0.040 (4)	0.050 (4)	0.030 (4)	0.011 (4)	0.002 (3)	0.005 (5)
Geometric parar	neters (Å, °)					
Hg1—Cl1		2.3429 (18)	C3	—C4		1.392 (12)
Hg1—S1		2.4548 (17)	C3	—Н3		0.9500
Hg1—Cl2		2.6050 (17)	C4	—C5		1.362 (12)
Hg1—Cl2 ⁱ		2.742 (2)	C4	—H4		0.9500
Cl2—Hg1 ⁱⁱ		2.742 (2)	C5	—С6		1.381 (10)
S1—C1		1.782 (7)	C5	—Н5		0.9500
S1—C7		1.795 (8)	C6	—Н6		0.9500
C1—C2		1.381 (10)	C7	—H11A		0.9800
C1—C6		1.393 (10)	C7	—H11B		0.9800
C2—C3		1.380 (10)	C7	—Н11С		0.9800
С2—Н2		0.9500				
Cl1—Hg1—S1		143.53 (7)	C2	—С3—Н3		119.9
Cl1—Hg1—Cl2		110.97 (7)	C4	—С3—Н3		119.9
S1—Hg1—Cl2		99.31 (6)	C5	—C4—C3		120.1 (7)
Cl1—Hg1—Cl2 ⁱ		100.08 (6)	C5	—С4—Н4		120.0
S1—Hg1—Cl2 ⁱ		98.49 (6)	C3	—С4—Н4		120.0
Cl2—Hg1—Cl2 ⁱ		92.28 (5)	C4	C5C6		120.9 (7)
Hg1—Cl2—Hg1 ⁱ	i	97.92 (6)	C4	—С5—Н5		119.5
C1—S1—C7		102.5 (3)	C6	—С5—Н5		119.5
C1—S1—Hg1		103.6 (2)	C5			118.6 (7)
C7—S1—Hg1		106.4 (3)	C5	—С6—Н6		120.7
C2—C1—C6		121.1 (6)	C1	—С6—Н6		120.7
C2-C1-S1		121.8 (5)	S1-	—C7—H11A		109.5
C6-C1-S1		117.0 (5)	S1-	—C7—H11B		109.5
C3—C2—C1		119.0 (7)	H1	1A—C7—H11B		109.5
С3—С2—Н2		120.5	S1-	—С7—Н11С		109.5
С1—С2—Н2		120.5	H1	1A—C7—H11C		109.5
C2—C3—C4		120.2 (8)	H1	1B—C7—H11C		109.5
Cl1—Hg1—Cl2–	–Hg1 ⁱⁱ	-77.75 (8)	C7	—S1—C1—C6		-120.4 (6)
S1—Hg1—Cl2—	Hg1 ⁱⁱ	81.56 (7)	Нg	s1—S1—C1—C6		129.1 (5)
Cl2 ⁱ —Hg1—Cl2-	—Hg1 ⁱⁱ	-179.453 (9)	C6			1.3 (11)
Cl1—Hg1—S1—	-C1	-40.3 (3)	S1-	C1C3		179.5 (6)
Cl2—Hg1—S1—	-C1	173.5 (2)	C1	C2C3C4		-1.6 (11)
Cl2 ⁱ —Hg1—S1—	-C1	79.7 (2)	C2			1.3 (12)
Cl1—Hg1—S1—	·C7	-147.9 (3)	C3	C4C5C6		-0.6 (12)
Cl2—Hg1—S1—	·C7	65.8 (3)	C4			0.3 (11)
Cl2 ⁱ —Hg1—S1—	-C7	-28.0 (3)	C2			-0.6 (10)
C7—S1—C1—C	2	61.4 (7)	S1-			-178.9 (5)
Hg1—S1—C1—C	02	-49.2 (6)				
G (1	() 1/0 :1/0	(1) 1/0 11	10			

Symmetry codes: (i) x-1/2, y, -z+1/2; (ii) x+1/2, y, -z+1/2.

